Publikationen

Scientific papers

  • Nowack, B., Boldrin, A., Caballero, A., Foss Hansen,s., Gottschalk,F., Heggelund,L., Hennig, M., Mackevica, A., Maes,H., Navratilova, J., Neubauer,N., Peters,R., Rose, J., Schäffer,A.,Scifo,L., van Leeuwen,S., von der Kammer, F., Wohlleben,W., Wyrwoll, A., Hristozov, D., (2016). Meeting the Needs for Released Nanomaterials Required for Further Testing – The SUN Approach. Environ. Sci. Technol. 2016, 50, 2747−2753.
  •  Coll, C., Notter, D., Gottschalk, F., TSun, T., Som, C., Nowack, B, (2015). Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 9, DOI:10.3109/17435390.2015.1073812.
  • Gottschalk, F., Lassen, C., Kjølholt, J., Christensen, F., Nowack, B., (2015). Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment. Int. J. Environ. Res. Public Health, 12, 5581-5602.
  • Hischier, R., Nowack, B., Gottschalk, F., Hincapie, I., Steinfeldt, M., Som, C., (2015). Life cycle assessment of fac¸ade coating systems containing manufactured nanomaterials. J Nanopart Res DOI 10.1007/s11051-015-2881-0.
  • Walser, T., Gottschalk, F., (2014). Stochastic fate analyis of engineered nanoparticles in incineration plants. Journal of Cleaner Production. 80, 241-251.
  • Sun, T.Y., Gottschalk, F., Hungerbühler, K., Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 185, 69-76.
  • Gottschalk, F., Sun, T.Y., Nowack, B., (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 181, 287-300.
  • Gottschalk, F., Kost, E., Nowack, B. (2013). Engineered nanomaterials in waters and soils: A risk quantification based on probabilistic exposure and effect modeling. Environmental Toxicology & Chemistry, 32,1278-1287.
  • Gottschalk, F., Nowack, B (2013). A Probabilistic Method for Species Sensitivity Distributions Taking into Account the Inherent Uncertainty and Variability of Effects to Estimate Environmental Risk. Integrated Environmental Assessment and Management. 9,79-86.
  • Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., (2012). Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. Journal of Nanoparticle Research.14:1109.
  • Clark, K.; van Tongeren, M.; Christensen, F.; Brouwer, D.; Nowack, B.; Gottschalk, F.; Micheletti, C.; Schmid, K.; Gerritsen, R.; Aitken, R.; Vaquero, C.; Gkanis, V.; Housiadas, C.; de Ipiña, J. M. L.; Riediker, M., (2012). Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices. J. Nanopart.14:970.
  • Gottschalk, F., Ort, Ch., Scholz, R.W., Nowack, B. (2011). Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environmental Pollution. 159, 3439-3445.
  • Gottschalk, F., Nowack, B. (2011). The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring, 13, 1145-1155.
  • Gottschalk, F., Sonderer, T., Scholz, R. W., Nowack, B. (2010). Possibilities and Limitations of Modeling Environmental Exposure to Engineered Nanomaterials by Probabilistic Material Flow Analysis. Environmental Toxicology & Chemistry, 29, 1036-1048.
  • Gottschalk, F., Scholz, R. W., Nowack, B. (2010). Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environmental Modelling & Software, 25, 320-332.
  • Gottschalk, F., Sonderer, T., Scholz, R. W., Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology, 43, 9216-9222.
  • Koehler, A. R., Som, C., Helland, A. & Gottschalk, F. (2008). Studying the potential release of carbon nanotubes throughout the application life cycle. Journal of Cleaner Production, 16, 927-937.

Technical & scientific reports

  • Kjølholt, J.,Gottschalk, F., Brinch A., Holten Lützhøft H.Ch.,Hartmann, N.B., Nowack, B., Baun, A. 2015. Environmental assessment of nanomaterial use in Denmark. Environmental project No. 1788, 2015 , 2015 from the danish environmental protection agency. 100 pp. http://mst.dk/service/publikationer/publikationsarkiv/ 2015/nov/environmental-assessment-of-nanomaterial-use-in-denmark/
  • Gottschalk, F., Nowack, B., Lassen, C., Kjølholt, J., Christensen, F., 2015. Nanomaterials in the danish environment. Modelling exposure of the danish environment to selected nanomaterials. Environmental project no. 1639, 2015 from the danish environmental protection agency. 143 pp. Http://www2.Mst.Dk/udgiv/publications/2015/01/978-87-93283-60-2.Pdf.
  • Hartmann, N.B., Skjolding, L.M., Hansen, S.F., Kjølholt, J., Gottschalk, F., Baun, A., 2014. Environmental fate and behaviour of nanomaterials New knowledge on important transformation processes. Environmental project no. 1594, 2014 from the danish environmental protection agency. 114 pp. http://www2.mst.dk/Udgiv/publications/2014/08/978-87-93178-87-8.pdf.
  • Steinfeldt, M., Gottschalk, F., Wigger, H., von Gleicha, A., 2013. Environmental exposure to engineered nanomaterial from four applications: nanoTiO2 in paint, nanoZnO in glass coatings, MWCNT in epoxy plates, and nanocellulose as a paper additive, Project report of the work package 4 of the NanoSustain project. Bremen.-
  • Hansen, S.F., Baun, A., Tiede, K, Gottschalk, F., van der Meent, D., Peijnenburg, W., Fernandes,T., Riediker, M. (2009). Environmental fate and behaviour of nanoparticles-beyond listing of limitations. Report of The European Network on the Health and Environmental Impact of Nanomaterials, Bilthoven.
  • Gottschalk, F. (2010). Probabilistic/stochastic environmental exposure modeling. Methodology and applications to engineered nanomaterials. Dissertation ETH. doi:10.3929/ethz-a-006078470.
  • Gottschalk, F.; Nowack, B. (2012). Modeling the Environmental Release and Exposure of Engineered Nanomaterials. In Towards Efficient Designing of Safe Nanomaterials: Innovative Merge of Computational Approaches and Experimental Techniques, Leszczynski, J.; Puzyn, T., Eds. Royal Society of Chemistry, www.rsc.org: 2012; Vol. RSC Nanoscience & Nanotechnology No. 25.
  • Nowack, B., Gottschalk, F., Mueller, N., Som, C.(2012). Life-Cycle Concepts for Sustainable Use of Engineered Nanomaterials in Nanoproducts.In Handbook of Green Chemistry Volume 9: Designing Safer Chemicals. Wiley.
  • Hansen, S.F., Baun, A., Tiede, K., Gottschalk, F., Meent, D., Peijnenburg, W., Fernandes, T., Riediker, M., 2011. Consensus Report based on the NanoImpactNet workshop: Environmental fate and behaviour of nanoparticles – beyond listing of limitations. NanoImpactNet.
  • Mueller, E., Schluep, M., Widmer, R., Gottschalk, F., Böni, H. (2009). Assessment of e-waste flows: a probabilistic approach to quantify e-waste based on world ICT and development indicators. R’09 World Congress, 14/09/2009. Davos, Switzerland.
  • Gottschalk, F. (2006). Umwelt- und Gesundheitseinwirkungen von Kohlenstoff-Nanoröhren (carbon nanotubes). Entwurf einer Risikobewertung mit besonderer Betrachtung potenzieller Applikationen in textilen Fasern. Stuttgart: Fraunhofer IRB.